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Abstract  The paper presents a graph based combinatorial approach for reconstruction of multi-
valued surfaces from the data given in the form of a grid. The input is assumed to be given in the 
form of a set of quintuplets (i,j,x,y,z) where (i,j) are the grid indices and (x,y,z) are the coordinates 
of the corresponding point. The given points are first grouped into the sets with identical i-values 
and sets with identical j-values. For each such set then a novel graph-based curve-fitting algorithm 
is employed which can generate curves with branch points and discontinuities.  These sets of 
curves are then combinatorially matched to obtain networks of loops, which on tessellation gives 
the reconstructed surface. The illustrative examples demonstrate that even for apparently simple 
data set, a topologically wide variety of surfaces can be generated. The present method can handle 
single valued, multi-valued, manifold, non-manifold surfaces with or without holes. 
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INTRODUCTION 
 
   Surface reconstruction refers to the variety of 
procedures used to obtain a surface representation of 
objects from which data has been obtained as 
coordinates of points that lie on the bounding surface of 
a real object. Thus surface reconstruction algorithms 
assumes the presence of an underlying real surface and 
aims at modeling it from measured data. The source of 
data can be quite diverse such as digital or ultrasonic 
scanning of engineering or biological objects, seismic 
survey of subterranean geological features, range 
imaging, data obtained from scanning tunneling 
microscopes (for extremely small objects), data 
synthetically generated from image processing of X-ray 
or angiographs, CT scans etc. A reconstruction 
algorithm generally depends on the structure of the data. 
The accuracy and topology of the resultant surface 
depends on the method employed for fitting the data. 
Smooth fitting of data is mostly inexact and gives a 
four-cornered patch, which has severe topological 
limitations. Tessellated surfaces can represent objects 
with arbitrary topology and sharp local features and can 
fit the data exactly. In the present work, a grid structure 
of the data is assumed which is typically obtained from 
post processing of seismic survey of subterranean 
geological features and a tessellated surface fitting is 
performed. 
 
   Reconstruction of single valued surfaces from grid 
data is quite straightforward [Verhoff, et al., 1989]. The 
authors of this article are not aware of any work 
available in literature for surface fitting on multi-valued 
grid. Substantial amount of work is, however, available 

that fits tessellated or smooth surface over a dense cloud 
of points (some of which use grid as an intermediate 
data structure, they are not meant to handle gridded 
data). Tessellated surface fitting algorithms are mostly 
computational geometry based that work for well-
distributed points and do not utilize the possible 
structure in the data. [Hoppe et al., 1992] estimates the 
tangent plane at each sample point using k-nearest 
neighbours and then uses marching cube algorithm to 
actually obtain the tessellated surface. [Edelsbrunner 
and Mucke, 1994] extended the concept of α-shapes to 
3D which basically eliminates potentially interior points 
and produces a triangulation for the remaining points. 
The topology of the result is unpredictable and sensitive 
to the parameter α, which is difficult to estimate. [Attali, 
1998] used the concept of γ-regular shapes in 
mathematical morphology to reconstruct surface from 
unorganized points. More recent works assume that 
point cloud belong to the boundary surface of the solid, 
possibly generated by scanning or use of a coordinate 
measuring machine. [Amenta and Bern, 1999] proposed 
voronoi filtering [Amenta et al., 2000] used 
complimentary cone for reconstruction of complicated 
surfaces from sufficiently dense and uniform point 
cloud. Other methodologies relevant for tessellated 
surface fitting over point cloud can be found in [Ruud. 
and Vemuri, 1991, Bernardini et al., 1999, Pulli and 
Shapiro, 2000, Lee, 2000, Sun et al, 2001, Floater and 
Reimers, 2001]. Reconstruction of smooth surfaces 
from point cloud is generally an approximate one and 
mostly requires segmentation of the data based on 
computed differential property of the underlying surface 
[Loop and DeRose, 1990; Sarkar and Menq, 1991, 
Sapidis and Besl, 1995] . 
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DEFINITIONS 
 
Grid: A grid is a set of points whose projection on xy-

plane can be arranged such that the points are located 
at the intersections of two orthogonal sets of parallel 
equispaced lines. Thus, every point can be associated 
with two integers, called indices, identifying the 
particular pair of lines at the intersection of which its 
projection is located. A point in a grid can, thus, be 
represented by as (i,j,x,y,z) where (i,j) and (x,y,z) 
correspond to the grid indices and coordinates of the 
point. 

Multi-valued Grid: A grid data set in which at least one 
(i,j) value occur more than once is called a multi-
valued grid. 

Layer: The set of data points with a given value of i or j 
lies on a plane called a layer. 

Level: The set of data points in a layer with a given 
value of j or i lies on a line called a level. 

Edge: A line segment joining two points in two 
consecutive levels is called an edge. 

Loop: A sequence of edges forming a closed simple 
polygon in 3D space is called a loop. 

Slope: The angle made by an edge with z-plane is called 
the slope or absolute slope of the edge. Angle made by 
an edge with its adjacent edge is called the relative 
slope of the edge. 

 
ASSUMPTIONS 

 
1. Data is noiseless 
2. Data is available in the form of a grid, i.e., as a set of 

(i,j,x,y,z) values. 
3. Data is complete, i.e., for a given (i,j) value all the 

(x,y,z) values on the underlying surface are given. 
4. Holes on the surface manifest as absence of grid 

points in the data within the region of interest. 
5. Density of data is such that a piecewise linear 

interpolation through the data is adequate.  
6.  

OVERVIEW 
 
The objective of the present approach is to obtain all 
possible solutions satisfying certain conditions. Here we 
follow a bottom-up approach; i.e. first, for the points in 
each layer, the 2D curve-fitting♣ problem is solved by a 
graph-based algorithm, then the curves in the orthogonal 
planes are matched to form four-sided loops which are 
then tessellated by adding a diagonal to obtain two 
triangles per loop. The assembly of all triangles gives 
the required surface. Since in a multi-valued grid there 
are many ways the points can be joined to form the set 
edges in a layer and there are many ways to form the 
loops, it is possible to generate a large number of 
solution. Hence, to capture more practical solutions, 
constraints are imposed to restrict undesirable 

                                                           
♣piecewise linear curve with possible branch points and 
discontinuities 

fragmentation of the resultant surface and to avoid 
undue variation of slope. 
 

CURVE FITTING 
 
Data read as grid is first organized in the form of layer-
level hierarchy in both x and y directions. For each layer 
the curve-fitting problem is solved by first constructing 
the bipartite graphs between each pair of adjacent levels 
and then concatenating the valid graphs to obtain the 
curves in a layer. 

Bipartite Graph: The levels in a j-layer are arranged in 
an ascending order of their i-values and the points in a 
level are sorted in the ascending order of their z-values. 
Now all possible bipartite graphs are considered 
between the points in the leftmost pair of levels and each 
such graph is geometrically validated; if the edges in the 
graph intersect or the slope of any edge is more than a 
prescribed value, the graph is considered invalid and 
discarded. Since the points are already sorted, 
intersection check can be done symbolically which is 
fast, robust and reliable. Two edges e1 and e2 
respectively in a layer between points p1, p2 and q1, q2 do 
not intersect if the z-coordinates of p1-q1 and p2-q2 have 
same sign. From table-1 it can be observed that for a 
case of two points per level, although the possible 
number of bipartite graph 16, only 4 of them pass both 
the tests with allowed absolute slope to be 0°. 

Table 1: Generating valid bipartite graphs 

option Graph intersection slope 
1  Passed Passed 
2  Passed Passed 
3  Passed  
4  Passed  
5  Passed  
6  Passed  
7    
8    
9  Passed Passed 

10  Passed Passed 
11  Passed  
12  Passed  
13  Passed  
14  Passed  
15    
16    

 
Concatenation: It is the step in which bipartite graphs 
are concatenated to obtain the feasible set of curves on 
each layer. Each pair of consecutive levels in a layer 
generates a number of valid graphs. If ni is the number 
of valid graphs in the levels li and li+1 in a layer, and 
there are k+1 such levels, then the total number of ways 
for concatenating the graphs to obtain the curves in the 
layer is n1× n2 ×…× nk. It can be observed that trivial 
bipartite graphs are allowed which on one hand allows 
variety of topologies to be created but on the other hand 
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fragments the curve. To keep the total number of 
solutions to a manageable value and to eliminate 
generation of invalid surfaces in subsequent steps 
following conditions are imposed. 

1. All the points in the shared level must have at least 
one edge incident on them 

2. The angle between an edge in one graph adjacent to 
an edge in the adjacent graph (relative slope) must 
be within a given value. 

3. The minimum number of levels spanned by each 
connected component (fragment length) must be 
more than some prescribed value. 

Fig.1 illustrates the effect of these constraints in 
validation of results of curve construction in a layer. 
 

SURFACE FITTING 
 
   Generation of reconstructed candidate surfaces from 
the two sets of curves belonging to the i-layers and j-
layers has two steps: loop generation and loop 
tessellation. 

Loop generation: For a given set of curves on the i-
layers and j-layers, the algorithm to construct a loop 
associated with the grid point (i,j) is given below. 

1. On layer j, select an edge between levels i and i+1. If 
no such edge is found, discard the option and try 
with the next set of curves and restart from step-1. 

2. Switch to layer i+1 and select an edge between 
levels j and j+1 such that it shares a vertex with the 
edge selected in step-1. If no such edge is found, 
discard the option and try with the next set of curves 
and restart from step-1. 

3. Switch to layer j+1 and select an edge between 
levels i+1 and i such that it shares a vertex with the 
edge selected in step-2. If no such edge is found, 
discard the option and try with the next set of curves 
and restart from step-1. 

4. Switch to layer i and select an edge between levels 
j+1 and j such that it shares one vertex with the edge 
selected in step-1 and the other vertex with the edge 
selected in step-3. If no such edge is found, discard 
the option and try with the next set of curves and 
restart from step-1. 

5. Store the four edges so detected in proper order to 
form a loop. 

6. Follow step-1 to step-5 to identify all possible 
distinct loops associated with grid point (i,j). 

Loop tessellation: If a, b, c, d are the four vertices in a 
four-sided loop the triangles abc and acd gives a 
tessellation of the loop.  

   The above steps are followed for each value of i and j 
of interest to obtain an exhaustive set of loops for a 
given set of curves on the respective layers. The set of 
all such triangles obtained from all the loops detected in 
the above step gives a reconstructed surface. Same steps 
are followed for all the sets of curves on the layer to 
generate the set of all possible reconstructed surfaces. 

RESULTS AND DISCUSSION 
 
   The above algorithm has been implemented using C++ 
and OpenGL has been used for visualization. Several 
real and synthetic data was used to demonstrate the 
capabilities of the proposed method. It has been 
established that the algorithm can generate all types of 
topology of surfaces: manifold, non-manifold, open, 
closed and surface with holes. However, for the sake of 
brevity only a representative set of results is included in 
this article. Since the main  purpose of the work was to 
study the topological variety of the surfaces that get 
generated and its sensitivity to the user specified 
parameters, not much effort has been put to optimize the 
algorithm and its implementation. The time taken 
depends on number of data points, absolute and relative 
slope and minimum fragment length specifications in a 
non-linear fashion. This is because the number of 
solutions grows very fast with reduced fragment length 
and relaxed slope constraint and hence it takes more 
time. 
   In the figures, the four numbers in the bracket 
correspond to absolute slope, relative slope, minimum 
number of points in a curve and number of valid 
surfaces generated (from which only a representative set 
is included in the figure). 

   Table-2 shows the statistics for one set of control 
parameters, which demonstrates how the number of 
solutions is brought to a manageable value. A 
representative set of corresponding results is shown in 
Fig.2. 

Table 2 Effect of control parameters on 
reconstruction from data in Fig.2 

Algorithm step Statistics 

Number of data points 84 

Layers in i-direction 8 

Layers in j-direction 3 

Absolute slope 45o 

Relative slope 45o 

Curves generated in a layer (average) 29594 

Curves without isolated points (average) 4901 

Curves with at least 5 points (average) 8 

Surfaces from valid curves 512 

Valid surfaces generated 17 

 
   Using a small set of regular array of points a wide 
variety of surface topologies are generated by the above 
method (Fig.3). The results can be useful in study of 
crystallographic planes. The time taken for generating 
the results is sensitive to the control parameters. For the 
different combinations of parameters tried the time 
varied from 3 seconds to 30 minutes.  If the data is a 
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single valued grid, the present methodology very fast 
and generates a unique surface (Fig.4). On the other 
hand, missing data points are likely to manifest in the 
form of holes in the surface (Fig.5). If the data is a of 
more general nature, many interesting combination of 
closed, and open surfaces might be generated which are 
basically non-manifold in nature (Fig.6) and difficult to 
obtain by the existing methods. 
 

CONCLUSIONS 
 
   The paper presented a simple graph based 
combinatorial approach to the problem of surface 
reconstruction from multi-valued grid. The method fully 
exploits the inherent structure in the data and generates 
all possible tessellated surfaces satisfying the slope and 
fragment length constraints. These constraints are 
imposed to avoid exorbitantly high number of 
(combinatorially possible) solutions for a non-trivial 
data set, only some of which are practically meaningful. 
It is demonstrated that the proposed method can 
generate all variety of surfaces: manifold, non-manifold, 
open, closed and those with holes. 
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Fig.1 Validation of a curve 

(a) Data points (b) Surface 1 

(f) Surface 5 

(c) Surface 2 

(e) Surface 4 

(d) Surface 3 

Fig.2  Reconstructing a multi-valued surface 

[30 o, 30 o, 6, 17] 

Fig.3 Multiple results from a simple data set 

(a) Data points (b) Surface 1 (c) Surface 2 

(d) Surface 3 (e) Surface 4 (f) Surface 5 

(g) Surface 6 (h) Surface 7 (i) Surface 8 

(j) Surface 9 (k) Surface 10 

[45 o, 45 o, 2, 1281] 

(a) Data points 

(b) Reconstructed surface 

Fig.4 Reconstruction of single valued surface 

[90o, 90 o, 20, 1] 

(a) Data Points 

(c) Surface 2 

(b) Surface 1 

(d) Surface 3 

Fig.5 Surface with hole 
[0 o, 0 o, 2, 7] 

(a) Data points (b) Surface 1 

(d) Surface 3 (c) Surface 2 

Fig.6 Non-manifold surface with closed and 
open portions 

[40 o, 40 o, 3, 17] 
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